If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-5t^2-10t+250
We move all terms to the left:
0-(-5t^2-10t+250)=0
We add all the numbers together, and all the variables
-(-5t^2-10t+250)=0
We get rid of parentheses
5t^2+10t-250=0
a = 5; b = 10; c = -250;
Δ = b2-4ac
Δ = 102-4·5·(-250)
Δ = 5100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5100}=\sqrt{100*51}=\sqrt{100}*\sqrt{51}=10\sqrt{51}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{51}}{2*5}=\frac{-10-10\sqrt{51}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{51}}{2*5}=\frac{-10+10\sqrt{51}}{10} $
| 4x-2(x-2)=-9+5x-8 | | 6.48/x=2.16 | | 3c+-10c−3c−-20c=20 | | 13=9r +8 | | 44=7(x-2) | | -24x-53=-7x-19 | | -9y-1=8y-7 | | 5x-2(x-5)=22 | | 2x+3=48+2 | | 3(x-3)=-19 | | v+49=8v | | 4u^2-19u+90=0 | | 3x+4=6x-23 | | (2/7x+1/3)-(3/8x+3/7)= | | 180=3x-40+2x+11 | | 16y+6+10(-1.8y+18.2)=180 | | 10x+17=2x+241 | | 9x-2=5+3x | | 6+7/3x=-20 | | -5/6x+9=44 | | 5x−5+3x+13=180 | | 3/5n+9/10=1/5-23/10 | | 7x+20x=30 | | 10=2/3v | | 3/5n+9/5=-23/10 | | 4x^2-10=-9 | | 15.1=(y/6)+4.1 | | -10+w=10−9w | | -15.1=(y/6)+4.1 | | -7j−10=-8j | | 14-3(4x-8)=2 | | 1w−7=-10−2w |